Classification of Brain Activity in Emotional States Using HOS Analysis

نویسنده

  • Seyyed Abed Hosseini
چکیده

This paper proposes an emotion recognition system using EEG signals and higher order spectra. A visual induction based acquisition protocol is designed for recording the EEG signals in five channels (FP1, FP2, T3, T4 and Pz) under two emotional states of participants, calm-neutral and negatively exited. After pre-processing the signals, higher order spectra are employed to extract the features for classifying human emotions. We used Genetic Algorithm (GA) and Support vector machine (SVM) for optimum features selection for the classifier. In this research, we achieved an average accuracy of 82.32% for the two emotional states using Linear Discriminant Analysis (LDA) classifier. We concluded that, HOS analysis could be an accurate tool in the assessment of human emotional states. We achieved to same results compared to our previous studies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stress and Perception of Emotional Stimuli: Long-term Stress Rewiring the Brain

Introduction: Long-term stressful situations can drastically influence one’s mental life. However, the effect of mental stress on recognition of emotional stimuli needs to be explored. In this study, recognition of emotional stimuli in a stressful situation was investigated. Four emotional conditions, including positive and negative states in both low and high levels of arousal were analy...

متن کامل

Classification of emotional states from electrocardiogram signals: a non-linear approach based on hurst

BACKGROUND Identifying the emotional state is helpful in applications involving patients with autism and other intellectual disabilities; computer-based training, human computer interaction etc. Electrocardiogram (ECG) signals, being an activity of the autonomous nervous system (ANS), reflect the underlying true emotional state of a person. However, the performance of various methods developed ...

متن کامل

A Hybrid Approach Based on Higher Order Spectra for Clinical Recognition of Seizure and Epilepsy Using Brain Activity

Introduction: This paper proposes a reliable and efficient technique to recognize different epilepsy states, including healthy, interictal, and ictal states, using Electroencephalogram (EEG) signals. Methods: The proposed approach consists of pre-processing, feature extraction by higher order spectra, feature normalization, feature selection by genetic algorithm and ranking method, and classif...

متن کامل

Applying Genetic Algorithm to EEG Signals for Feature Reduction in Mental Task Classification

Brain-Computer interface systems are a new mode of communication which provides a new path between brain and its surrounding by processing EEG signals measured in different mental states.  Therefore, choosing suitable features is demanded for a good BCI communication. In this regard, one of the points to be considered is feature vector dimensionality. We present a method of feature reduction us...

متن کامل

Classifying Different Emotional States by Means of EEG-Based Functional Connectivity Patterns

This study aimed to classify different emotional states by means of EEG-based functional connectivity patterns. Forty young participants viewed film clips that evoked the following emotional states: neutral, positive, or negative. Three connectivity indices, including correlation, coherence, and phase synchronization, were used to estimate brain functional connectivity in EEG signals. Following...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012